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ABSTRACT

The paper concerns alternating powers of a Hilbert space. Let / * be defined by
AKAYx A - Ax) = Ax A - - A Axg. Tt is proved that the norm of the linear
map D A*(A) depends only upon |A| and is assumed at the identity.

INTRODUCTION

If I is a (complex) Hilbert space, let A*: 2(IC) - £(A*I() be the map
defined by AX(A)(x A -+ Ax,)=Ax, A - -+ A Ax,. Then AFis a differen-
tiable map and D AX(A): £(3C) —» £(A*I() is a bounded operator. The main
result of this paper is:

TueoreM (*). [ID AX(A = I(D A*(J AP L), where |A|=
(A*A)'/2,
The title of the paper derives from the fact that for any T in £(3(),

(DANT))(Lgo)(xy A - Ax) =2 ATxgA -+ ATy
+Tx, AxgnTagh - ATxy

+ T A AT Axy,

so that D AX(T)(1) is a “noncommutative analogue of kT*~1.”” The following
corollary reveals the above result in a clearer form.

CoroLLary. If A is a compact operator (in particular, if X is finite-di-
mensional), and if a, = a,= - - - =, are the k largest singular values of A
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(i.e., eigenvalues of | A]) counting multiplicity, then
“D A k(A)” = spa(ap, ag, -0y,

where s,_(ay,...,0;) is the (k—1)th elementary symmetric polynomial of
Qe s O

The statement of the corollary remains valid even for noncompact A, if
the phrase ““k largest singular values of A” is interpreted suitably.

PRELIMINARIES

The symbol I will always denote a complex Hilbert space, and £(J() the
C*-algebra of all bounded operators on JC. The kth alternating and tensor
powers of JC (with their natural Hilbert-space structures) will be denoted
by A*IC and ®*I(C respectively (k>1). If A, A,,...,A,€L(F), then A
Ao nAand A\® - - @A, will denote the (uniquely defined) operators on
AKX and ®* K respectively, satisfying

(An- - AANx Ao AX )= Ax Ao A Axg
and
(A® - ®A)(x,® - ®x )= Ax,®@ - - ®Asx,

for all x;,...,x, in JC. (Note that A~ +-- A A is not the wedge product in
AKL(IC); in fact, AA A will not be zero unless A has rank at most one.) We
shall write N*A=An---AA and ®*A=A® - - ®A. Define ¢,: £(H) -
L(AKIC) and ¢, : (K ) — L(®*I() as follows:
Qu(B)(x, A - Axy) =By AAxg A s AAx + Ax A Brg A Axg A e A Axg

+ .-+ Ax, A - ANAx,_ A Bx, (1)
whenever x,,...,x;,€ 3(; and

Y4(B) = BOAQA® --- ®A+ A®BOAR® --- ®A

+ -+ ARA® .- - QAQB (2)
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[Note: In general, if A,,...,A € L(I(0), thenx; A -+ Axp = Ay A s AARKy
is not a meaningfully defined operator; nevertheless, (1) does define a
well-defined operator which we shall sometimes denote by BAAA --- AN A
+ .-+ 4+ AA -+ AAAB, although individual terms of this sum do not make
sense.

Now, A¥: £(IC) - L(A*I() is a differential map of Banach spaces. So, if
AEL(H0), then D AK(A): £(H) - £(AFIC) is a bounded operator. In fact,
it can be shown (cf. [1]) that D AX(A)B) = q@u(B) for all A, BE 2(¥K); i.e.,
D AK(A)= gq,, as an operator from £(3() to £(A*IC).

Finally, if A€ 2(J(), we shall write |A| for the positive square root of
A*A; ie., |A| = (A*A)/2

Proof of Theorem (). In view of the foregoing remarks, it is to be
proved that ||, |l = ll@ 4 (Dl for every A in £(3(). (Here, and elsewhere,
the identity operator on JC will be denoted by 1.) The equality asserted above
is a consequence of the following theorems, whose proofs are accomplished by
a series of lemmas.

TueoreM 1. If A= 0, then @, is a completely positive map, and hence
sl = @Dl

TaeorREM 2. If AEL(H0), then

loall=lle all = 9).as | = pas -

Before getting into the proof of Theorem 1, let us recall some facts about
completely positive maps (hereafter abbreviated to c.p. maps). A linear map
@: £(H) - £(K) is said to be a c.p. map if, for every positive integer n, the
n X n matrix (@(B,;)) defines a positive operator on M=KD ... OK,
whenever (B,;) defines a positive operator on 3. A theorem of Stinespring’s
(cf. [2]) states that @: £(JC) - £(K) is a c.p. map iff there exists a representa-
tion 7: £(JC) - £(I(, ) and a bounded operator T: K — I, such that p(B) =
T*m(B)T VBE £(I(). Since representations have norm one, it follows that
c.p. maps attain their norm at the identity: i.e., @l = ll@(1)|l for every c.p.
map @.

Lemma L1. If A=0, then B~ A®B is a c.p. map (from £(X) to
LH@I0)).
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Proof. Suppose (B,;), <; j<n defines a positive operator on ™. Then,
we must check that (A® B,), .; ;<  defines a positive operator on (JC® 3C)™.
Under the natural identification of (J(® JC)™ with JC® IC™, it is easy to see
that (A® B;); <, j<n corresponds to A®(B,;), <; ;<n, Which is positive, since
the tensor product of positive operators is positive. a

In the following lemma, S; denotes the symmetric group on k objects. For
g in S, let &, denote the signature of the permutation o, and let U, denote the
unitary operator on ®*Y( satisfying U,(x,® - -- ®x,)= Tom® o Bxy
Vx,,....x; in 3. Let V: A k93¢ > ®*J( be the natural inclusion map, defined
by

V(xlA---Axk):(—kl—! > eoUo)(x1®---®xk)

0ES,

Vxy,....5, €. (3)

Lemma 1.2.  If @4, ¥4, and V are defined as in Equations (1), (2), and
(3), then

94(B) =V*y,(B)V VA, BEL(I()

Proof. 1t is easily seen that V is isometric. Let PEL(®*J() be the
projection onto the range of V. It follows from the definitions that

P:F E Ean' (4)

If A, BEL(I) and if x|,...,x, € I, then
V@A(B)V*(xl® T ®xk)

=Vou(B) (x4 -+ - Axy)

=V(Bx A AxgA - AAx+ -+ Ax A - A Ax A Bry)

:(% b eoUo)(Bx1® o ®Ax,+ - - + Ax,® - - - ®Bx,)

foeS;

= Pyy(B)(x,® - - - ®xy),
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and hence

Vu(B)V* = Py(B). (5)
Another routine check shows that for all o in S5,

U,(A,® - ®A )Y, = Aa(l)® T ®Aa(k)

forall A,,...,A, in £(3C). This, and the symmetry of y,(B), imply that

Usda(B)Uy-1 = yu(B).

In other words, y,(B) commutes with every U,, and hence [by (4)] y4(B)
commutes with the projection P. So Equation (5) may be rewritten as

Voa(B)V* = Py,(B)=Py,(B)P.
Because V¥V =1 and VV* = P, this gives the announced conclusion. [ ]

Proof of Theorem 1. Let A=0. By Lemma 1.1 and Stinespring’s result,
there exists a representation 7:£(3()— 2(, ) and a bounded operator
T: ®*%9C - IC_ such that y,(B)=T*n(B)T YBEL(]K). Lemma 1.2 then
implies that @,(B) = (TV )*n(B)(TV), thereby proving that ¢, is c.p. ]

Although the index is normally defined only for semi-Fredholm operators,
we shall define, for every A in £(3(),

ind(A) = dim(ker A ) —dim(ker A*),

(with the understanding that oo — oo = 0). Recall that the polar decomposition
theorem expresses A as a product: A=U|A|, where U is a partial isometry
which maps ker A to zero and ker “A isometrically onto ker *A*, According to
whether ind A= 0 or ind A <0, we may redefine U on kerA so that U is
coisometric (i.e. UU*=1) or U is isometric. The modified operator U still
satisfies A=U| A|, U*A=|A|, U*U|A| = | A|. This observation will be used
in the proof of the next two lemmas.

LemMma 2.1. Let A€ (). Then,
(i) ifind A=0,

o axl| <llal <ll@al;
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(i) if ind A <0,
Iqu|A*|“ =lpall=le 4l

Proof. (i): Here ind A= 0 and ind A* < 0. So, by the observation made
earlier, there exist a coisometry U and an isometry W such that

A=U|A|, U*A=|A|,
A*=W|A*|,  WrA*=|A*|.
Then, for any B in £(9(), since (AU ) AFU*) =1,
lga(B)|=IBA -« AA+ -+ AN -+ AB
=[(AFUYAKU*)YBA---AA+ - +An--- AB)|

<|(AFU*}(BA---AA+ - +An - AB)|

=|U*BA --- AU*A+ --- +U*AA --- AUFAAU*B]|
= | pyxa(U*B)]|
=|¢a/(U*B)]
<llp all|B|  (since [U*I=1),
and hence,
lpall <l -
On the other hand, since | A*| = 0, we have, by Theorem 1,
o anll =00 - A&+ +far] ]
=|(1A - A|A*+ - +]A%| A - AD(AFWHE(AFW))

(since A*W is isometric)
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<[|[(1n - - AlA¥+ - HA* A - ADAFWH|

=|W*A - A|AX WA - +A*XWHA - AWH|

=@ axw(W*)]

= lea(W*)| (since A =|A*|W*)

< |l (since ||W*|=1).
So case (i) is proved. The proof of case (ii) is entirely analogous. ]

Lemma 2.2. Let A€ £(I(), and suppose ind A < 0. Then | A*| is unitarily
equivalent to | A|®0, where 0 is the zero operator on a space of dimension
—ind A.

Proof. This follows from the comments made above on the polar decom-
position. ]

Henceforth, s;_,(A{,...,A;) will denote the (k —1)st elementary symmet-
ric polynomial of the A;’s; thus,

Se A A ) =AAs A F A A At - FA A, A

LemMa 2.3. IfP=0, then [l@pll = ll@pgo .

Proof.

Case (i): P has pure point spectrum. Thus, there is an orthonormal
basis {e;} of 3 and numbers A, =0 such that Pe; = A ,e; Vi. Then, clearly, for
distinct indices i}, ...,i,

(pP(l)(eil/\ cee /\e,.k) = skgl(kil,...,kik)eil/\ - ne

Thus, @u(1) is diagonalizable with respect to the basis {e; » --- A¢g, } for
A*9(. Hence,

lep(1)| = sup{sk‘l(Ail, B0 W EE AT distinct} . (6)
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Since the eigenvalues of P®0 are the A,’s together with an appropriate
number of zeros, and since a formula analogous to (6) holds with P®0 in
place of P, and since the A;’s are nonnegative it is clear that

loell = lop(D] = ereo(D)] =lraol

Case (ii): P arbitrary. Since positive operators with pure point spectrum
are dense in the family of all positive operators, and since | @, || and l|@pg I
both vary continuously with P, the proof is complete. ]

Proof of Theorem 2. Lemmas 2.2 and 2.3 imply that II(p‘A‘ 1= 11| %l
for any A€ £(J(). (If ind A = 0, apply the lemmas to A* in place of A.) This,

together with Lemma 2.1, now shows that l@,[l = llg 4, | = 1@ axII. Inter-
changing A and A*, we see that the common value of the three expressions
above agrees with || @,.|l, thus completing the proof of Theorem 2. [ ]

CoroLLARY. If A is a compact operator on ¥ (in particular, if I is
finite-dimensional and A is arbitrary), and if o, = ay>- -+ |0 is an enumer-
ation of the eigenvalues of | A|, counted with multiplicity, then

”D/\k(A)”:Sk—l(al""’ak)' (7)

Proof. |A| is a positive operator with pure point spectrum. It has
eigenvalues a; = a, > - - - | 0. The assertion follows from Equation (6) in the
proof of Lemma 2.3. [ ]

REMARKS.

(1) Equation (7) in the statement of the Corollary continues to hold for
noncompact A as well, if the “singular values” of A are appropriately
interpreted. Thus, if points in the essential spectrum of A are assigned infinite
multiplicity, and if a,...,a; are the k “largest” points in sp(|A|), then
1D AR = s,y ).

(2) A result similar to Theorem 1 can be stated with Schur products in
place of alternating products. More precisely, represent £(9C) concretely as
matrices, and let A- B be the Schur (or Hadamard) product of A and B. [If
A=(a;)and B=(B;;), then A-B=(a;;;;).] Define Sk R(I0) = £(I0) by

SFA)=A-A---- -A.
[ —

k terms
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Then it is easily shown that
D=K(A)(B)=B-A-----A+A-B-----A+---+A-A-----A-B. (8)

However, the Schur product is a compression of the tensor product. More
precisely, there exists an isometry V: 3 -»®*J( such that

Ao A =VHA® - ®A)V VAL, A EL(X0).

Hence, DZ*(A)(B) =V*y,(B)V VA, BEL(() [see (2) for the definition of
Y,]. If A=0, then the complete positivity of y,, (by Lemma 1.1) implies, as
before, that DZ*(A) is a c.p. map. Hence,

ID=*(4)|=|DZH(A)(D)].
So, if A =(a;;), it follows from Equation (8) that

Ix4(4)] = ket )]

k—1

it

=ksupa
i

In [1], the authors prove the equality of || D A KA and s, (ay,-..,0;)
in the finite-dimensional case. Their proof involves some complicated combi-
natorics, and is not very clear at certain points. The proof presented here has
the advantage of being free of combinatorics, and of being applicable in the
infinite-dimensional case as well. However, there are some common points in
the two proofs — notably, the reduction to the case where A is positive. The
author is indebted to Rajendra Bhatia, one of the coauthors of [1], for several
fruitful conversations with him, which resulted in this paper.
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